首页> 外文OA文献 >Short-term electric load forecasting based on a neural fuzzy network
【2h】

Short-term electric load forecasting based on a neural fuzzy network

机译:基于神经模糊网络的短期电力负荷预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Electric load forecasting is essential to improve the reliability of the ac power line data network and provide optimal load scheduling in an intelligent home system. In this paper, a short-term load forecasting realized by a neural fuzzy network (NFN) and a modified genetic algorithm (GA) is proposed. It can forecast the hourly load accurately with respect to different day types and weather information. By introducing new genetic operators, the modified GA performs better than the traditional GA under some benchmark test functions. The optimal network structure can be found by the modified GA when switches in the links of the network are introduced. The membership functions and the number of rules of the NFN can be obtained automatically. Results for a short-term load forecasting will be given.
机译:电力负荷预测对于提高交流电力线数据网络的可靠性以及在智能家居系统中提供最佳负荷调度至关重要。本文提出了一种由神经网络模糊神经网络(NFN)和改进遗传算法(GA)实现的短期负荷预测。它可以针对不同的日期类型和天气信息准确地预测小时负荷。通过引入新的遗传算子,经过改进的遗传算法在某些基准测试功能下的性能要优于传统遗传算法。当引入网络链路中的交换机时,可以通过修改后的遗传算法找到最佳的网络结构。可以自动获得NFN的隶属函数和规则数。将给出短期负荷预测的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号